Heterogeneity and chaos: Granular chains and DNA models

Haris Skokos

Department of Mathematics and Applied Mathematics, University of Cape Town Cape Town, South Africa

E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Work in collaboration with Vassos Achilleos, George Theocharis, Adrian Schwellnus, Malcolm Hillebrand, George Kalosakas

Outline

- Chaotic behavior of granular chains
 - ✓ Weakly nonlinear regime: Long-lived chaotic Anderson-like localization
 - **✓** Highly nonlinear regime: equilibrium chaotic state
- DNA models
 - **✓ Lyapunov exponents**
 - **✓ Different dynamical regimes**
 - **✓ DNA melting**
 - **✓ Deviation Vector Distributions**
- Summary

Energy Distributions

We consider normalized energy distributions

$$z_v \equiv \frac{E_v}{\sum_m E_m}$$
 with E_v being the energy of particle v.

Second moment:
$$m_2 = \sum_{v=1}^{N} (v - \overline{v})^2 z_v$$
 with $\overline{v} = \sum_{v=1}^{N} v z_v$

Participation number:
$$P = \frac{1}{\sum_{v=1}^{N} z_v^2}$$

measures the number of stronger excited modes in z_v . Single site excitation P=1. Equipartition of energy P=N.

Lyapunov Exponents (LEs) and Deviation Vector Distributions (DVDs)

Consider an orbit in the 2N-dimensional phase space with initial condition $\mathbf{x}(0)$ and an initial deviation vector from it $\mathbf{v}(0)$. Then the mean exponential rate of divergence is:

$$\mathbf{m} \mathbf{L} \mathbf{C} \mathbf{E} = \lambda_1 = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\|\vec{\mathbf{v}}(t)\|}{\|\vec{\mathbf{v}}(0)\|}$$

$$\lambda_1$$
=0 → Regular motion ∞ (t⁻¹)
 λ_1 ≠0 → Chaotic motion

Deviation vector:

$$v(t) = (\delta u_1(t), \delta u_2(t), ..., \delta u_N(t), \delta p_1(t), \delta p_2(t), ..., \delta p_N(t))$$

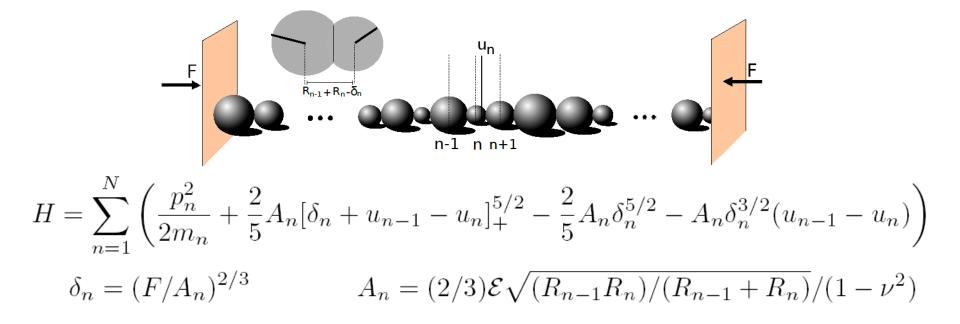
DVD:
$$w_l = \frac{\delta u_l^2 + \delta p_l^2}{\sum_{i} \left(\delta u_l^2 + \delta p_l^2\right)}$$

Granular media

Examples: coal, sand, rice, nuts, coffee etc.

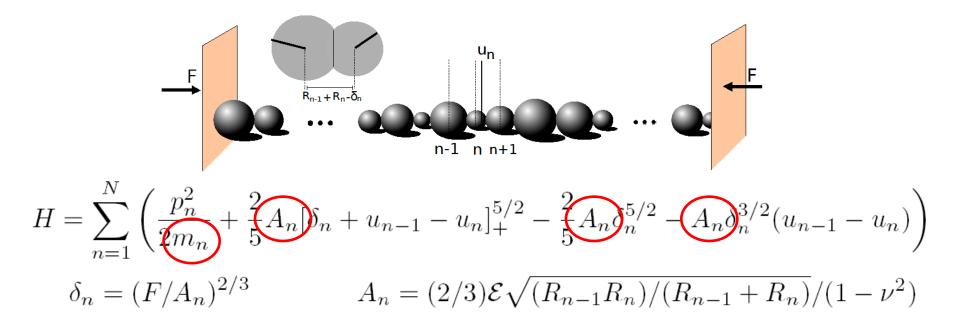
1D granular chain (experimental control of nonlinearity and disorder)

Hamiltonian model



 $[x]_{+}=0$ if x<0: formation of a gap. v: Poisson's ratio, \mathcal{E} : Elastic modulus. Hertzian forces between spherical beads. Fixed boundary conditions.

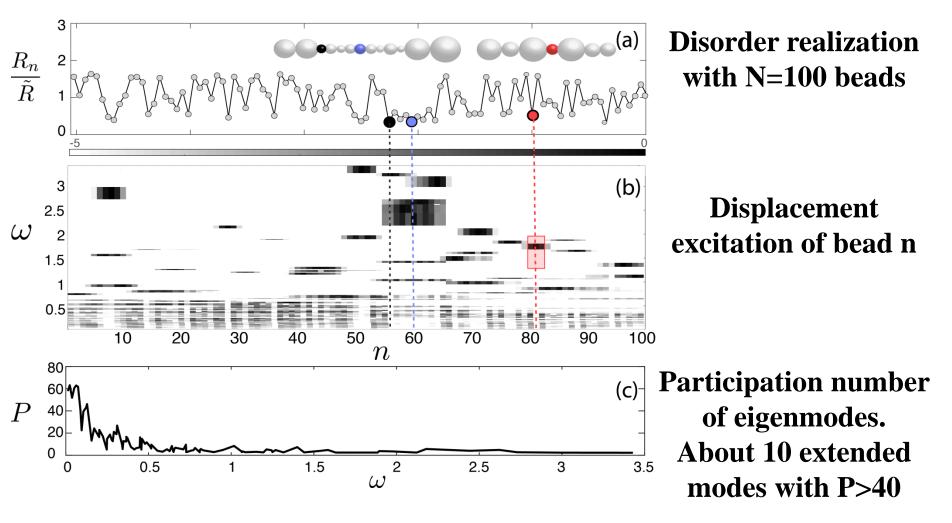
Hamiltonian model



 $[x]_{+}=0$ if x<0: formation of a gap. v: Poisson's ratio, \mathcal{E} : Elastic modulus. Hertzian forces between spherical beads. Fixed boundary conditions.

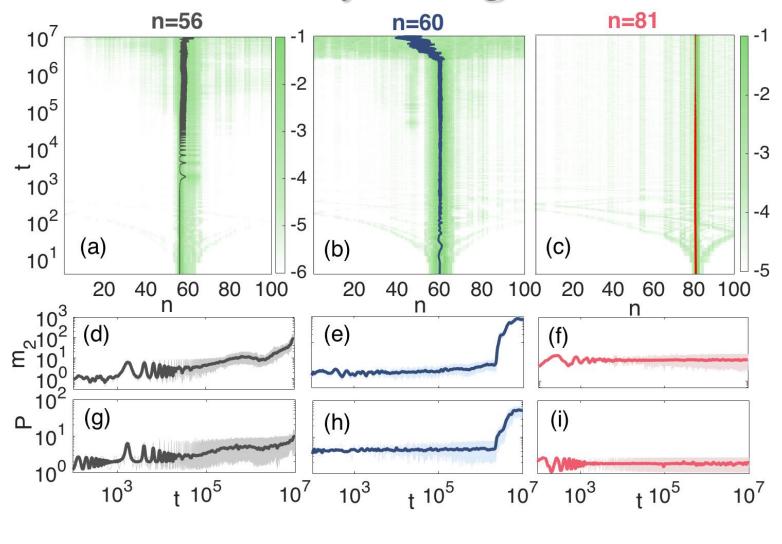
Disorder both in couplings and masses $R_n \in [R, \alpha R]$ with $\alpha \ge 1$

Eigenmodes and single site excitations



Achilleos et al. (2017) ArXiv:1707.03162

Weak nonlinearity: Long time evolution

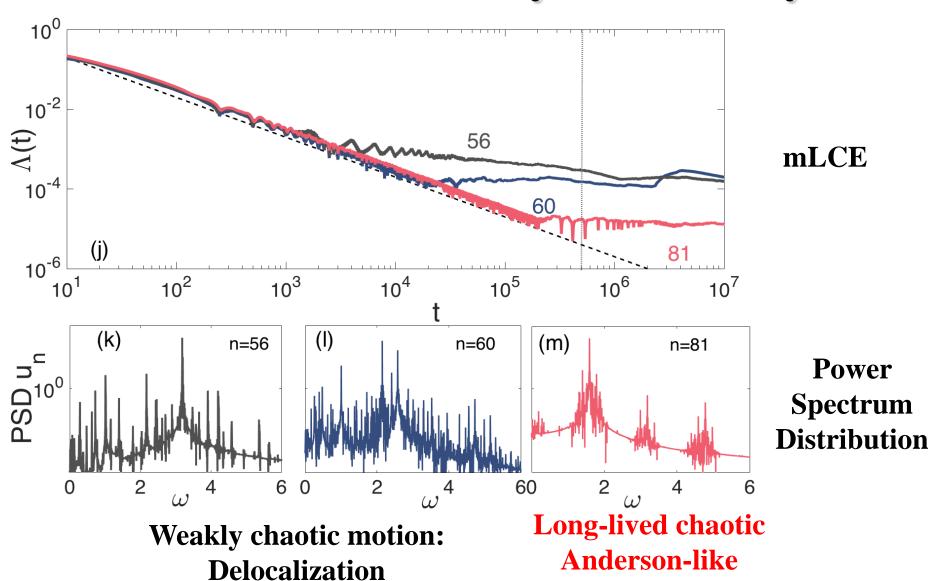


Delocalization

Delocalization

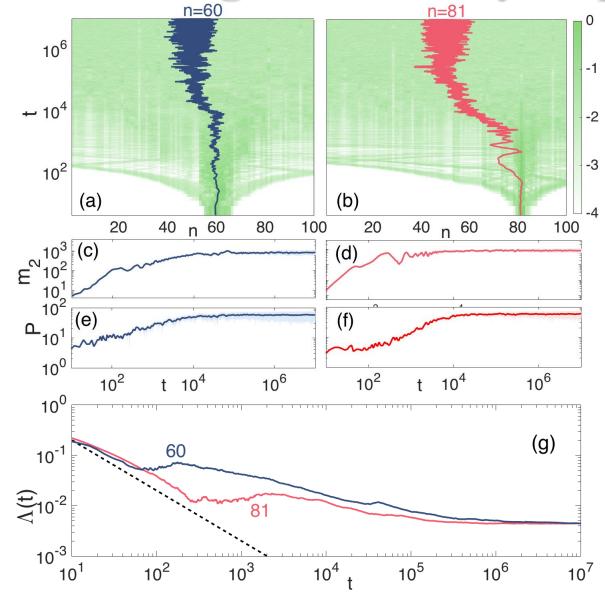
Localization

Weak nonlinearity: Chaoticity



Localization

Strong nonlinearity: Equipartition

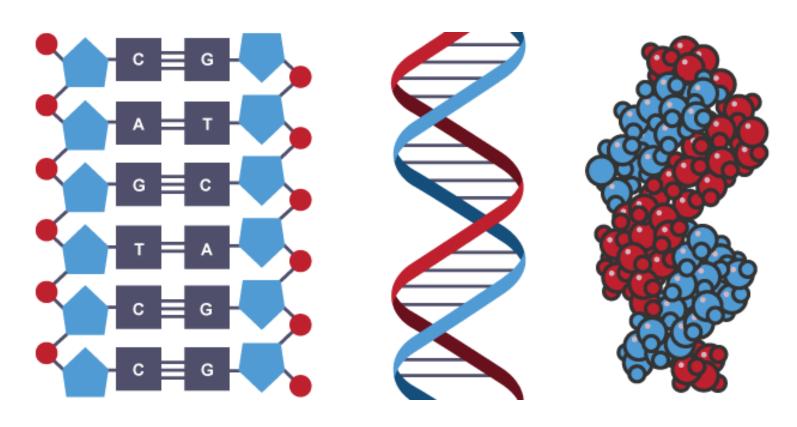


The granular chain reaches energy equipartition and an equilibrium chaotic state, independent of the initial position excitation.

DNA structure

Double helix with two types of bonds:

- Adenine-thymine (AT) two hydrogen bonds
- Guanine-cytosine (GC) three hydrogen bonds



Hamiltonian model

Peyrard-Bishop-Dauxois (PBD) model

[Dauxois, Peyrard, Bishop, PRE (1993)]

$$H_N = \sum_{n=1}^N \left[\frac{1}{2m} p_n^2 + \frac{D_n (e^{-a_n y_n} - 1)^2}{2} + \frac{K}{2} (1 + \rho e^{-b(y_n + y_{n-1})}) (y_n - y_{n-1})^2 \right]$$

Bond potential energy (Morse potential)

GC: D=0.075 eV, $a=6.9 \text{ Å}^{-1}$

AT: D=0.05 eV, a=4.2 Å^{-1}

Nearest neighbors coupling potential

 $K=0.025 \text{ eV/Å}^2$, $\rho=2$, $b=0.35 \text{ Å}^{-1}$

Different arrangements of AT and GC bonds.

AT AT AT AT AT AT AT AT

P_{AT}=1 (100% AT bonds)

Different arrangements of AT and GC bonds.

AT AT AT AT AT AT AT AT AT

P_{AT}=1 (100% AT bonds)

$$P_{AT} = 0.4 (40\% AT bonds)$$

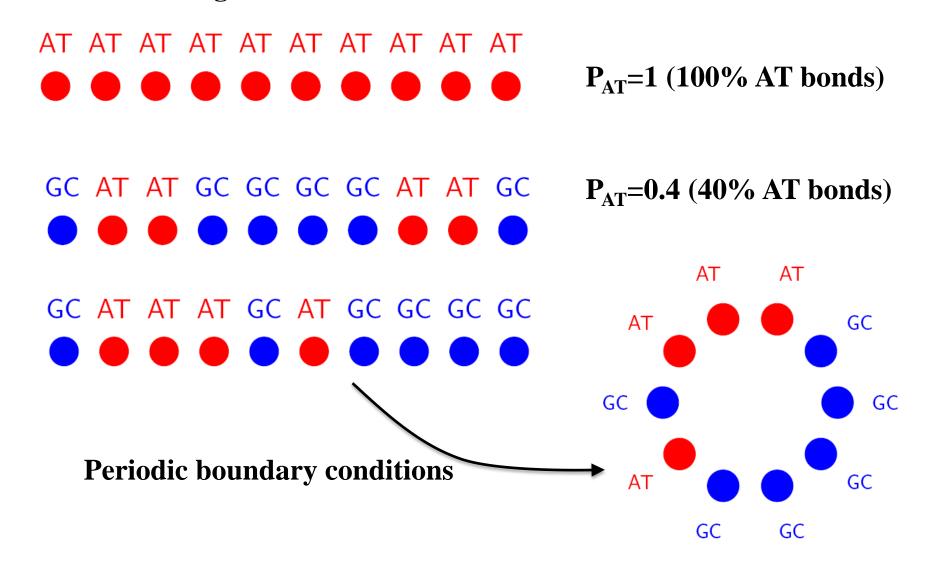
Different arrangements of AT and GC bonds.

AT AT AT AT AT AT AT AT AT

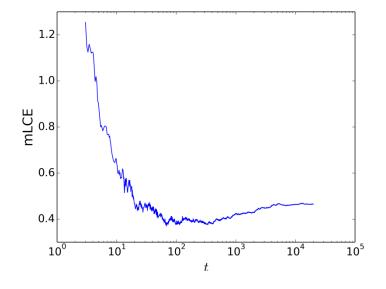
P_{AT}=1 (100% AT bonds)

 $P_{AT} = 0.4 (40\% AT bonds)$

Different arrangements of AT and GC bonds.

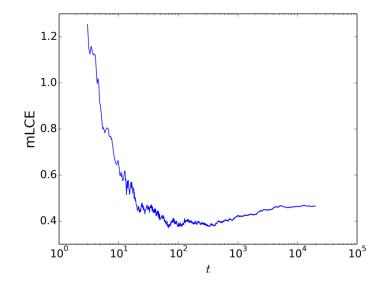


Lyapunov exponents (E/n=0.04, P_{AT}=0.3)



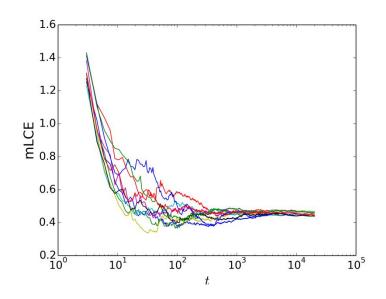
1 realization, 1 initial condition

Lyapunov exponents (E/n=0.04, P_{AT}=0.3)

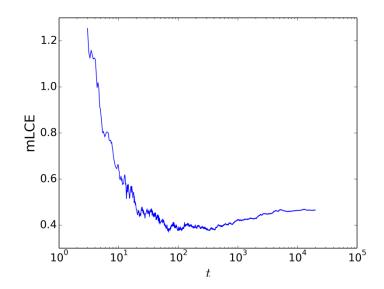


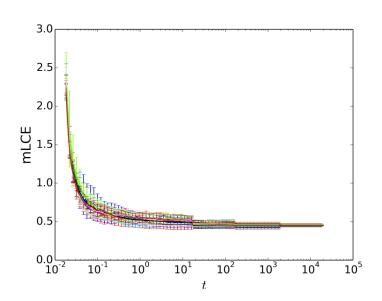
1 realization, 1 initial condition

1 realization, 10 initial conditions



Lyapunov exponents (E/n=0.04, P_{AT} =0.3)



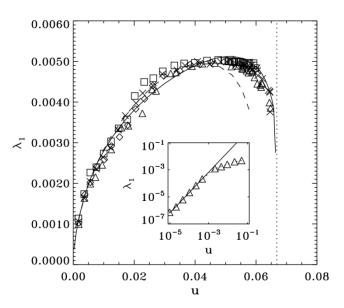


1 realization, 1 initial condition

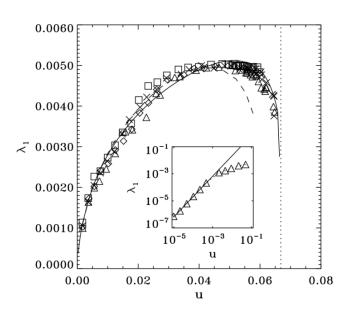
1 realization, 10 initial conditions



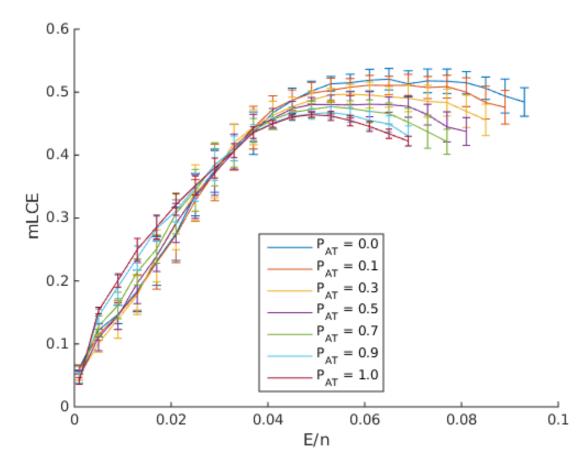
10 realizations, 10 initial conditions

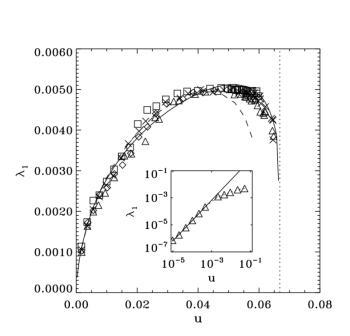


Homogeneous chain [Barré & Dauxois, EPL (2001)]

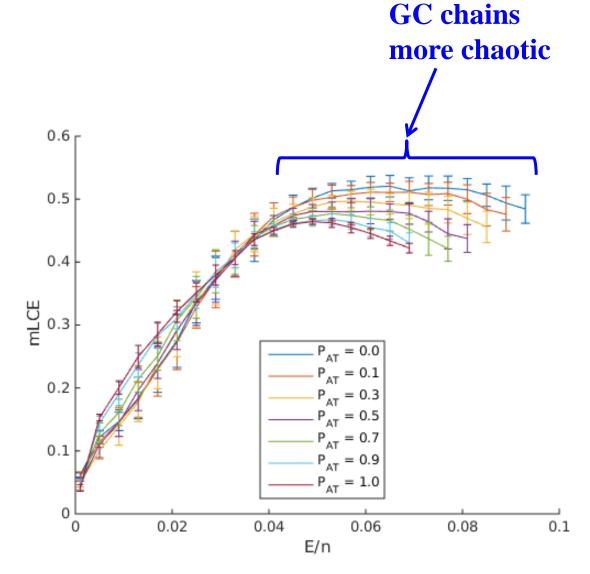


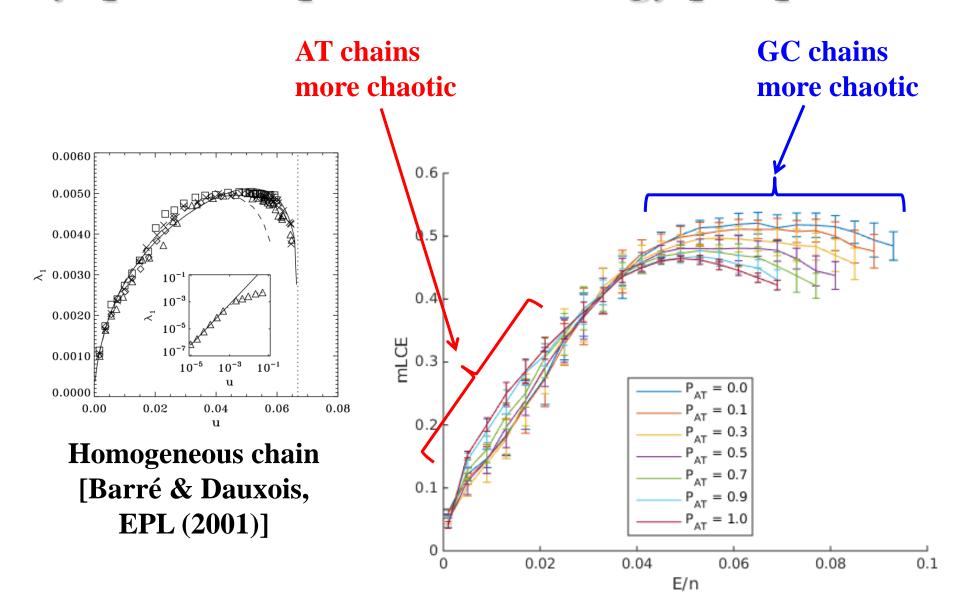
Homogeneous chain [Barré & Dauxois, EPL (2001)]

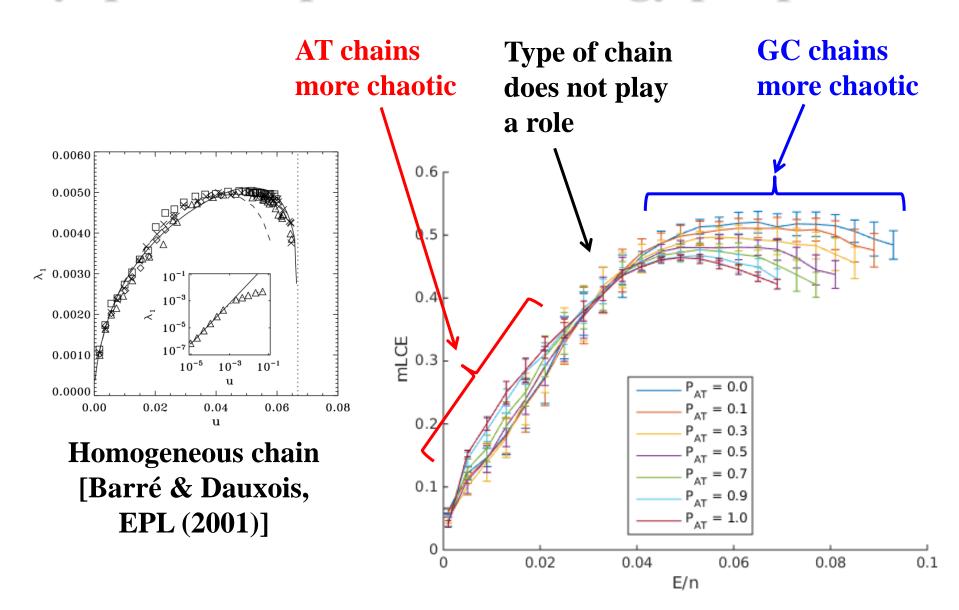




Homogeneous chain [Barré & Dauxois, EPL (2001)]

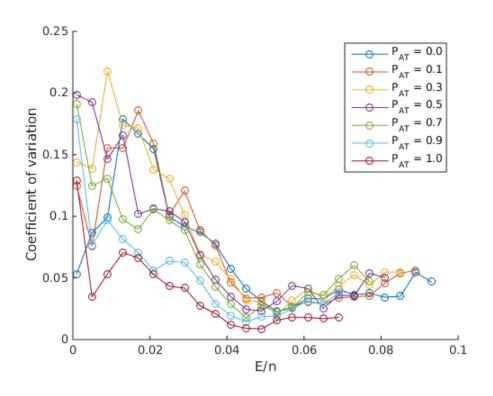






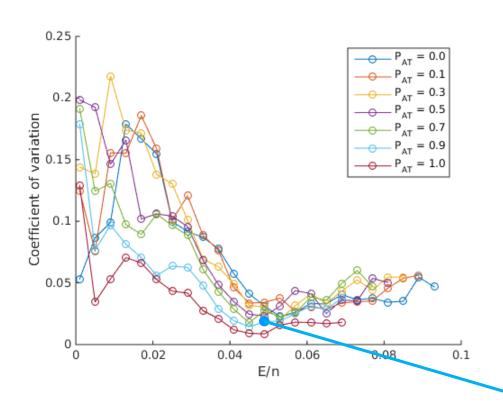
Values of Lyapunov exponents

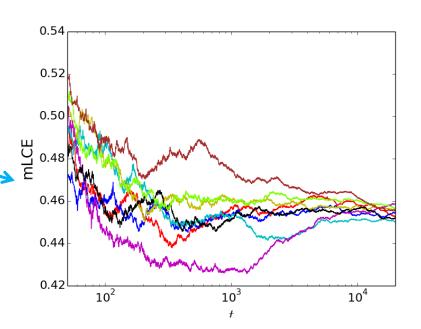
(Error of mLCE)/mLCE



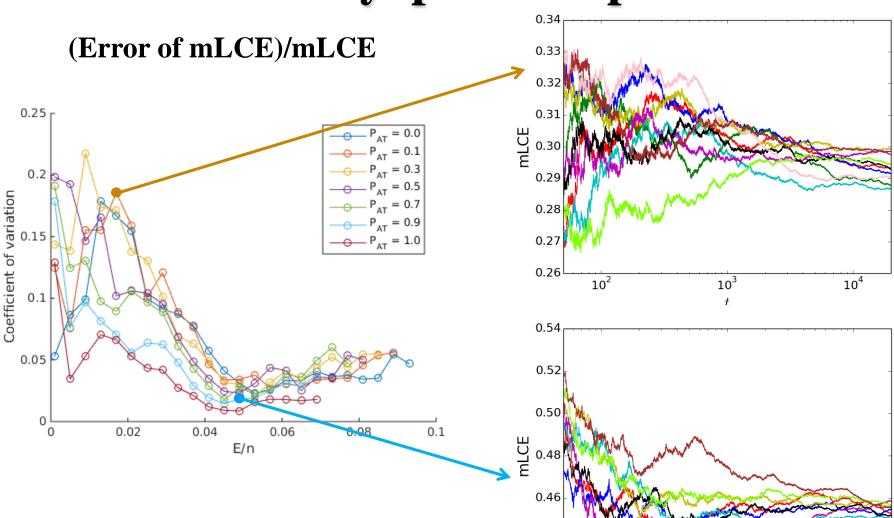
Values of Lyapunov exponents

(Error of mLCE)/mLCE





Values of Lyapunov exponents



0.44

0.42

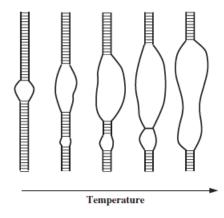
10²

10³

10⁴

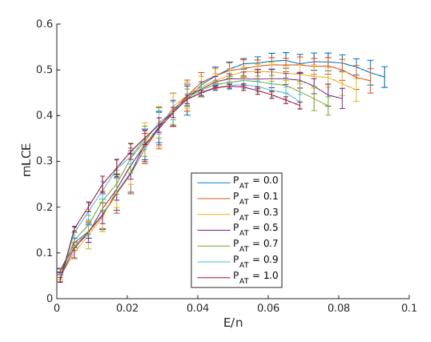
DNA denaturation (melting)

Melting: large bubbles forming in the DNA chain as bonds break



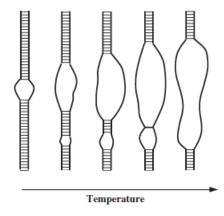
As y_n increases the exponentials in

$$D_n(e^{-a_ny_n}-1)^2 + \frac{K}{2}(1+\rho e^{-b(y_n+y_{n-1})})(y_n-y_{n-1})^2$$
 tend to 0, the system becomes effectively linear and the mLCE \rightarrow 0.



DNA denaturation (melting)

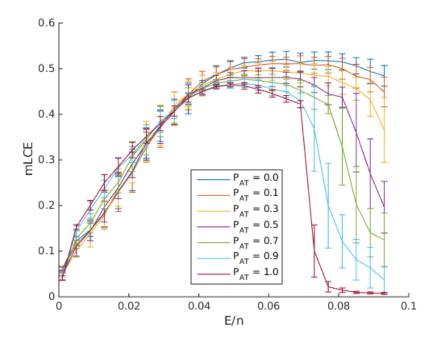
Melting: large bubbles forming in the DNA chain as bonds break



As y_n increases the exponentials in

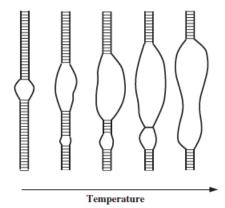
$$D_n(e^{-a_ny_n}-1)^2+\frac{K}{2}(1+\rho e^{-b(y_n+y_{n-1})})(y_n-y_{n-1})^2$$
 tend to 0, the system becomes effectively linear

and the mLCE \rightarrow 0.



DNA denaturation (melting)

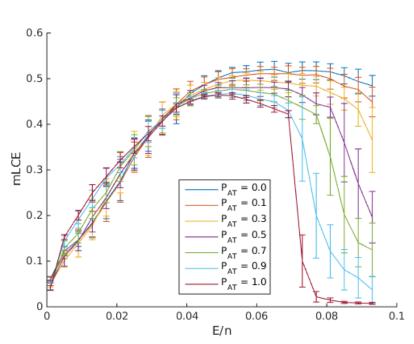
Melting: large bubbles forming in the DNA chain as bonds break

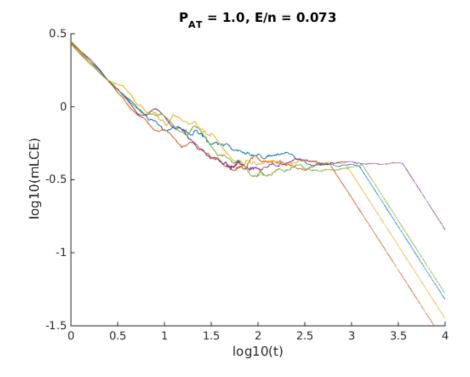


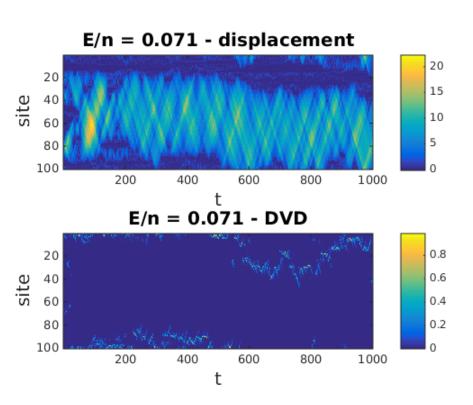
As y_n increases the exponentials in

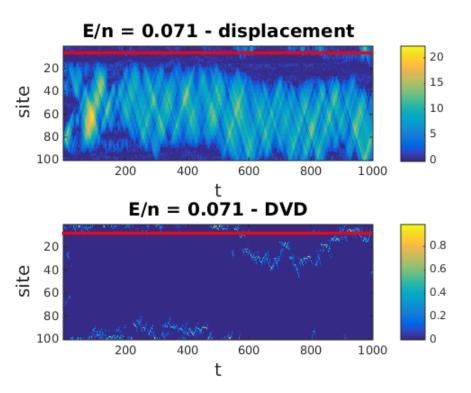
$$D_n(e^{-a_ny_n}-1)^2 + \frac{K}{2}(1+\rho e^{-b(y_n+y_{n-1})})(y_n-y_{n-1})^2$$

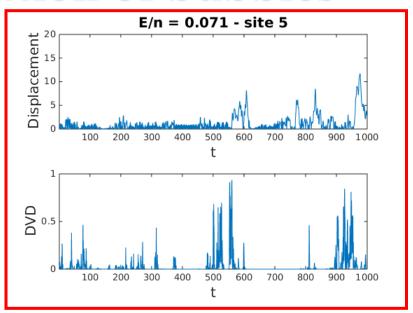
tend to 0, the system becomes effectively linear and the mLCE \rightarrow 0.

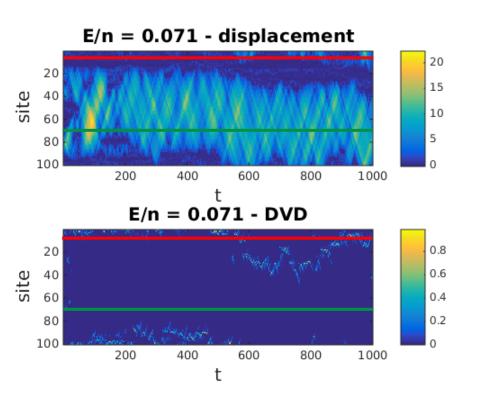


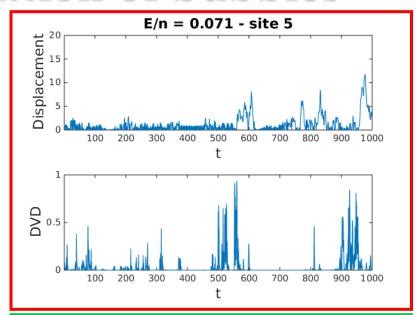


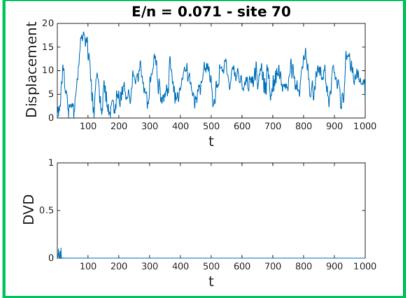




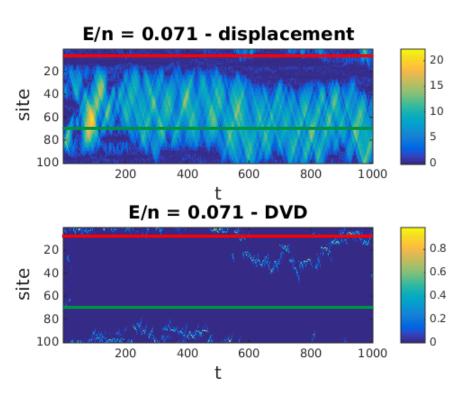


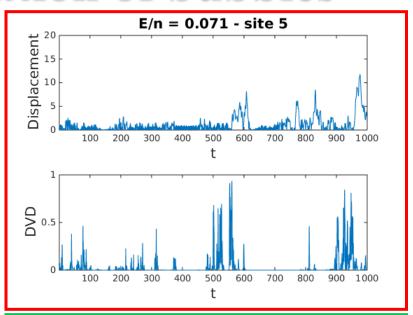


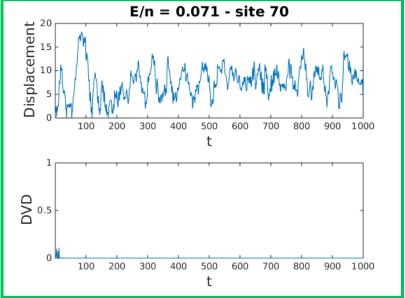




Relation between the concentration of the deviation vector at a site and the formation of a bubble at that site.







Mixing of the DNA chain

Mixing parameter α = Number of alternations in the chain (AT and GC).

$$\alpha=4$$
 $(1)\overline{0}111\overline{1}00000\overline{0}1\overline{1}(0)$

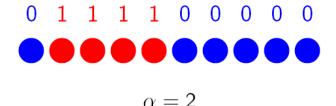
Mixing of the DNA chain

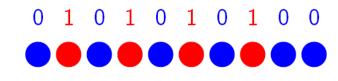
Mixing parameter α = Number of alternations in the chain (AT and GC).

$$\alpha=4 \qquad (1)\overline{0}111\overline{1}00000\overline{0}1\overline{1}(0)$$

Example case: N=10, $N_{AT}=4$, $N_{GC}=6$.

Extreme cases: $\alpha=2$ and $\alpha=8$





 $\alpha = 8$

Mixing of the DNA chain

Mixing parameter α = Number of alternations in the chain (AT and GC).

$$\alpha=4$$
 $(1)\overline{0}111\overline{1}00000\overline{0}1\overline{1}(0)$

Example case: N=10, $N_{AT}=4$, $N_{GC}=6$.

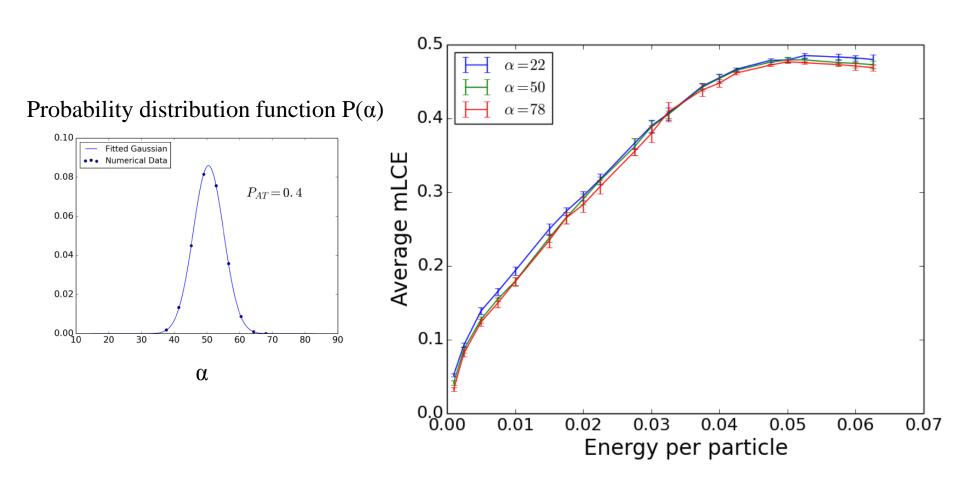
Extreme cases: $\alpha=2$ and $\alpha=8$

$$0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0$$
 $\alpha = 2$

$$0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$$
 $\alpha = 8$

$$2 \le \alpha \le \min\{2N_{AT}, 2N_{GC}\}, \quad \alpha \text{ even}$$

Effect of mixing



The more heterogeneous chains are slightly less chaotic

Summary

Granular chain model

- ✓ Moderate nonlinearities: although the overall system behaves chaotically, it can exhibit long lasting energy localization for particular single particle excitations.
- ✓ Sufficiently strong nonlinearities: the granular chain reaches energy equipartition and an equilibrium chaotic state, independent of the initial position excitation.

DNA model

- ✓ Heterogeneity influences the behavior of the mLE and the system's chaotic behavior.
- ✓ There seems to be a relation between the concentration of the DVD at a site and the formation of a bubble.
- ✓ Mixing does not influence significantly the system's chaoticity.
- ✓ The behavior of DVDs can provide important information about the chaotic behavior of a dynamical system.